
Building a Distributed Graph
Database in Rust

ZHENGYI YANG | Rust Meetup, Sydney

24 Feb, 2020

About Me

- PhD Student @ Data and Knowledge
Research Group, UNSW (2018 -
present)

- Research Interests: Graph Database,
Distributed Graph Processing, etc.

- Rust (~ 2 years) & Python (~ 6 years)

2

Zhengyi Yang
http://zhengyi.one

http://zhengyi.one

Contents

3

Introduction to Graph Database

Why are we building our own distributed graph
database? How does it perform?

The Rust Approach - PatMat

What are graph databases? Why are they so
useful?

What libraries are we using? Why do we love
Rust?

Rust Dependencies for PatMat

1

2

3

1. Introduction to
Graph Database

What are graph databases? Why
are they so useful?

What is a graph?

5

- A graph is a structure in mathematics (graph theory)
- Famous problem: Seven Bridges of Königsberg
- Optimised for handling highly connected data

Edge

Vertex

Graphs are indeed everywhere!

6

Internet

Social Networks

Road Networks

Knowledge GraphsBiological Networks

Graphs are indeed very large!

7

#Edges Ratio

<10K 17.8%

10K-100K 17.1%

100K-1M 10.1%

1M-10M 6.9%

10M-100M 16.3%

100M-1B 16.3%

>1B 15.5%

#Bytes Ratio

<100MB 19.0%

100MB-1G 15.7%

1G-10G 20.7%

10G-100G 14.1%

100G-1T 16.5%

>1T 14.0%

#Vetices Ratio

<10K 17.3%

10K-100K 17.3%

100K-1M 15.0%

1M-10M 13.4%

10M-100M 15.7%

>100M 21.3%

Sahu, S., Mhedhbi, A., Salihoglu, S. et al. The ubiquity of large graphs and surprising challenges of graph processing: extended survey. The VLDB Journal (2019)

>1 trillion
connections

>60 trillion
URLs

>60 billion
edges every 30

days

Graph DBMS Landscape

8

The graph database landscape in 2019DBMS popularity trend by database model
between 2013 and 2019 – DB-Engine

Labeled Property Graph Model

9

:Person
name=Alice

age=21

:Person
name=Bob

age=24

:knows
since=2020-01-20

:Comment
text=Wow!

:Post
title=Holidays
text=We had...

:replyOf

:hasCreator :hasCreator

- Labels: types (or classes) of vertices and edges
- Properties: arbitrary (key,value) pairs where key identifies a property and

value is the corresponding value of this property

Types of Graph Queries

10

Graph Pattern Matching

- Given a graph pattern, find
subgraphs in the database
graph that match the query.

- Can be augmented with other
(relational-like) features, such
as projection.

Graph Navigation

- A flexible querying mechanism
to navigate the topology of the
data.

- Called path queries, since they
require to navigate using paths
(potentially variable length).

- A declarative graph querying language developed by Neo4j
- Patterns are intuitively expressed using brackets and arrows:

encode vertices with “()” and edges with “->”.
- Graph pattern query

- Path query

Cypher Graph Query Language

11

MATCH (p:Person)-[:LIKES]->(:Language {name = "Rust"})

RETURN p.name

MATCH (p:Person)-[:KNOWS*1..2]->(:Person {name = "Alice"})

RETURN p.name

Graph Database Use Cases

12

Fraud Detection Link Prediction Recommender System

Network Motif
Computing

Chemical Compound
Search

Network Monitoring
and IOT

2. The Rust Approach -
PatMat

Why are we building our own
distributed graph database? How
does it perform?

Graph Database
Systems using Cypher

14

Single Machine
Lack Scalability

Suboptimal Algorithms
Lack Performance

- Glue together the academic efforts on
performance and the industrial efforts on
expressiveness

- Targeting on high performance and scalability
together with full Cypher support

- Started in late-2018 originally as a research
project

- Practically 100% Rust, 100% safe(25k+ lines of
Rust code for the core)

- Still a work-in-progress, currently all part-time
developers

PatMat: A Cypher-driven Distributed Graph Database

15
Hao, Kongzhang, et al. "PatMat: A Distributed Pattern Matching Engine with Cypher." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.

How does PatMat perform?

16

● Data Graph (LDBC_SNB benchmark)
○ Simulate a Facebook-like social network over 4 years
○ 187.11 million nodes, 1.25 billion edges (65GB in text, 170GB in Neo4j)

● Query Graph:

Q1/s Q2/s Q3/s Q4/s

Neo4j 87 594 236 182

PatMat 12 24 17 256

Single Thread Evaluation

17

- Configuration: Xeon CPU E5-2698 v4 @ 2.20GHz (use only 1 thread), 512GB RAM,
2 TB disk

Large Index

Q1/s Q2/s Q3/s Q4/s

Gradoop OUT OF
MEMORY

OVERTIME
OUT OF

MEMORY
OUT OF

MEMORY

Morpheus OVERTIME OVERTIME OVERTIME OVERTIME

PatMat 2.6 9.4 5.3 77.3

Distributed Evaluation

18

- Configuration: 10 machines (Xeon CPU E3-1220 V6 3.00GHz, 64GB RAM, 1 TB
disk, 10GBps)

19

Why do existing distributed solutions perform poorly?
1. Poor Matching Algorithms

a. Graph pattern matching is, in theory, NP-complete
b. Existing solutions typically adopt naive matching algorithms resulting in high time complexity
c. Poor matching algorithms also lead to large amount of intermediate result that significantly

increase the memory consumption and communication cost

2. High System Costs
a. The design and implementation of distributed systems (e.g. Spark and Flink) add overheads and

increase the costs

3. Restricted Programming Interface
a. Distributed engines usually provide limited APIs and programming model (e.g. Mapreduce for

Spark)
b. It is hard to implement advanced algorithms and optimizations (e.g. worst-case optimal join)

3. Rust Dependencies
for PatMat

What libraries are we using? Why
do we love Rust?

Timely Dataflow

21

- A distributed data-parallel compute engine based on the dataflow
computation model (https://github.com/TimelyDataflow/timely-dataflow)

- high-performance and low-latency
- highly scalable and flexible
- suitable for both streaming processing and batch processing

- The ecosystem
- Timely Dataflow:

- primitive operators: unary, binary, etc
- standard operators: map, filter, etc

- Differential Dataflow (https://github.com/timelydataflow/differential-dataflow)

- higher-level language built on Timely Dataflow
- operators: group, join, iterate, etc

https://github.com/TimelyDataflow/timely-dataflow)
https://github.com/timelydataflow/differential-dataflow)

22

22

extern crate timely;

use timely::dataflow::operators::*;
use timely::dataflow::*;

fn main() {
 timely::execute_from_args(std::env::args(), |worker| {
 let index = worker.index();
 let mut input = InputHandle::<u32, u32>::new();

 worker.dataflow(|scope| {
 scope
 .input_from(&mut input)
 .exchange(|&x| x as u64)
 .inspect(move |x|
 println!("worker {}:\thello {}", index, x));
 });

 for round in 0..10 {
 if index == 0 {
 input.send(round);
 }
 }
 })
 .unwrap();
}

create a new input

initialize and run a dataflow

shuffle the data to x%#workers

inspect the output

send data on Worker 0

% cargo run -- -w 4
 Finished dev [unoptimized + debuginfo] target(s) in
0.14s
 Running `target/debug/example -w 4`
worker 1: hello 1
worker 1: hello 5
worker 3: hello 3
worker 3: hello 7
worker 1: hello 9
worker 0: hello 0
worker 0: hello 4
worker 0: hello 8
worker 2: hello 2
worker 2: hello 6

Unordered

workers are indexed 0 to (#workers-1)

define InputHandle<Timestamp, Data>

using 4 workers

Timely Example 1

23

% cargo run -- -w 4
 Finished dev [unoptimized + debuginfo] target(s) in
0.14s
 Running `target/debug/example -w 4`
worker 0: hello 0
worker 1: hello 1
worker 2: hello 2
worker 3: hello 3
worker 0: hello 4
worker 1: hello 5
worker 2: hello 6
worker 3: hello 7
worker 0: hello 8
worker 1: hello 9

23

extern crate timely;

use timely::dataflow::operators::*;
use timely::dataflow::*;

fn main() {
 timely::execute_from_args(std::env::args(), |worker| {
 let index = worker.index();
 let mut input = InputHandle::<u32, u32>::new();
 let mut probe = ProbeHandle::new();

 worker.dataflow(|scope| {
 scope
 .input_from(&mut input)
 .exchange(|&x| x as u64)
 .inspect(move |x|
 println!("worker {}:\thello {}", index, x))
 .probe_with(&mut probe);
 });

 for round in 0..10 {
 if index == 0 {
 input.send(round);
 }

 input.advance_to(round + 1);
 while probe.less_than(input.time()) {
 worker.step();
 }
 }
 })
 .unwrap();
}

Loops until all workers
have processed all
work for that epoch

Monitor the
progress

Ordered

Timely Example 2

Control memory consumption

… does it work for graph processing?

24

PageRank
(20 iterations)

Cores twitter_rv
(41 million nodes,1.5 billion edges)

uk_2007_05
(105 million nodes,3.7 billion edges)

Spark 128 857s 1759s

Giraph 128 596s 1235s

GraphLab 128 249s 833s

GraphX 128 419s 462s

Laptop (Rust) 1 110s 256s

Timely 128 15s 19s

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost? (HOTOS'15)

Other Crates

25

- TiKV: fast distributed key-value database
- rust-rocksdb : Rust wrapper for RocksDB
- tarpc: pure Rust RPC framework
- Tokio: well-known asynchronous runtime
- Rayon: to do parallel computation easily
- threadpool: basic thread pool
- crossbeam: useful tools for concurrent

programming
- parking_lot: easy-to-use locks
- hdfs-rs: libhdfs binding for Rust
- Thrift: connect to HBase
- lru-rs: efficient LRU cache

- iron: web API support
- Serde(Bincode/JSON/CBOR): serialization

and deserialization
- itertools: extended iterators
- FxHash/SeaHash/fnv: fast hashing
- rust-snappy: fast snap compression
- indexmap/fixedbitset: useful data

structures
- rust-csv: load and export in csv format
- Clap: parsing command line arguments
- libc: interoperate with C code(e.g.

libcypher)

petgraph
Graph data structure library
in Rust.
(https://github.com/petgraph/pet
graph)

rusted_cypher
Rust crate for accessing a
neo4j server.
(https://github.com/livioribeiro
/rusted-cypher)

indradb
A simple graph database
written in Rust.
(https://github.com/indradb/indr
adb)

… …

26

Graph Analytics
in Rust

https://github.com/petgraph/petgraph
https://github.com/petgraph/petgraph
https://github.com/livioribeiro/rusted-cypher
https://github.com/livioribeiro/rusted-cypher
https://github.com/indradb/indradb
https://github.com/indradb/indradb

We love !

27

- Performance
- Blazing fast
- No garbage collector

- Reliability
- Guaranteed memory safety
- “Fearless Concurrency”

- Productivity
- Modern development tools
- Lots of amazing libraries

- and many more…

Does anyone have any questions?

https://github.com/UNSW-database
zyang@cse.unsw.edu.au

28

Thanks!

https://github.com/UNSW-database
mailto:zyang@cse.unsw.edu.au

