Building a Distributed Graph
Database in Rust

ZHENGYI| YANG | Rust Meetup, Sydney

2222222222

About Me

- PhD Student @ Data and Knowledge
Research Group, UNSW (2018 -
present)

- Research Interests: Graph Database,
Distributed Graph Processing, etc.

- Rust (~ 2 years) & Python (~ 6 years) http://zhengyi.one

Zhengyi Yang

http://zhengyi.one

Contents

Introduction to Graph Database

What are graph databases? Why are they so
useful?

The Rust Approach - PatMat

Why are we building our own distributed graph
database? How does it perform?

Rust Dependencies for PatMat

What libraries are we using? Why do we love
Rust?

1. Introduction to
Graph Database

What are graph databases? Why
are they so useful?

What is a graph?

- A graphis a structure in mathematics (graph theory)
- Famous problem: Seven Bridges of Konigsberg
- Optimised for handling highly connected data

Edge L

—

3 ‘\;_ Ny
'wu%t?_"{ '}- K;

Veﬁexf

Graphs are indeed everywhere!

h S

CORVET/SNARE =
¢

EGON

Ll
Elongator
o o

Social Networks

Complex

Ribosame

Biological Networks

#Vetices Ratio
<10K 17.3%
10K-100K 17.3%
100K-1M 15.0%
1M-10M 13.4%
10M-100M 15.7%

Graphs are indeed very large!

#Edges Ratio
<10K 17.8%
10K-100K | 17.1%
100K-1M 10.1%
1M-10M 6.9%

10M-100M | 16.3%
100M-1B 16.3%

#Bytes Ratio
<100MB 19.0%
100MB-1G 15.7%
1G-10G 20.7%
10G-100G 14.1%
100G-1T 16.5%

//4
/
/

L

Alibaba.com

Sahu, S., Mhedhbi, A., Salihoglu, S. et al. The ubiquity of large graphs and surprising challenges of graph processing: extended survey. The VLDB Journal (2019)

>1 trillion
connections

>60 trillion
URLs

>60 billion
edges every 30
days

Graph DBMS Landscape

Complete trend, starting with January 2013

Graph DEMS

lue

L EE N

(AR S)

DBMS popularity trend by database model
between 2013 and 2019 — DB-Engine

The graph database ecosystem 2019

Bstore 4Store Agens Mg STgMlegroGroph aNzrf) AWS Amaron Nephine Q
& DB Ae2 & 3it H i
Bem| Y Fauna FlockDB % Fluree e'--"" =

s B HugeGrapt ﬂ & INFINITEGRAPH

ey QCHAGQCARPH . '

b- Hrightstar

i - @ 0graph Ducteos

DR o e o
Qucw MuiiBy it ffMariaDB i AN v ®neoy
liRubase Opencoq Abenece t “ - Q entos Pariament Pointrel System Erdﬂll FOFYroker
Fursks) s ' fsan smpucpn *Sparksee ‘,5:';,“, steffi &, ,:\?.u..\
TIBCO M noecem .@_ i‘ velocityps »» WEIVE I iiiiin

The graph database landscape in 2019

Labeled Property Graph Model

:knows
since=2020-01-20

[:hasCreator } [:hasCreator

:Post
title=Holidays replyOf
text=We had...

- Labels: types (or classes) of vertices and edges
- Properties: arbitrary (key,value) pairs where keyidentifies a property and
valueis the corresponding value of this property

Types of Graph Queries

Graph Pattern Matching Graph Navigation
Given a graph pattern, find - Aflexible querying mechanism
subgraphs in the database to navigate the topology of the
graph that match the query. data.
Can be augmented with other - Called path queries, since they
(relational-like) features, such require to navigate using paths

as projection. (potentially variable length).

Cypher Graph Query Language

- A declarative graph querying language developed by Neo4;
- Patterns are intuitively expressed using brackets and arrows:
encode vertices with “()” and edges with “->".
- Graph pattern query

(p:Person)-[:LIKES]->(:Language {name = "Rust"})

p.name

Path query
(p:Person)-[:KNOWS*1..2]->(:Person {name = "Alice"})

p.name

Graph Database Use Cases

H
< K
Fraud Detection

O o] OC\O g%) J"\b
Ho N N N
H L&D
DA A D
Network Motif
Computing

&
I
Link Prediction
Y UY 0 Q0
"Ii’:": i,
L w u]\I (Er“‘\cn
Chemical Compound
Search

| w g w g

Recommender System

= !.‘:‘l ,‘..
Network Monitoring
and IOT

2. The Rust Approach -
PatMat

Why are we building our own
distributed graph database? How
does it perform?

Graph Database
Systems using Cypher

yNeos)

E A5l
ha. L W §

Suboptimal Algorithms
Lack Scalability Lack Performance

Single Machine

PatMat: A Cypher-driven Distributed Graph Database

. API Layer
- Glue together the academic efforts on

performance and the industrial efforts on
expressiveness

- Targeting on high performance and scalability Plan generator & aptirnizer
together with Full Cypher support —

- Started in late-2018 originally as a research
project

- Practically 100% Rust, 100% safe(25k+ lines of Local in-memory store & index
Rust code for the core)

- Still a work-in-progress, currently all part-time HBase TiKV
develo pers Distributed Storage Backend

Cypher Parser

Hao, Kongzhang, et al. "PatMat: A Distributed Pattern Matching Engine with Cypher." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.

How does PatMat perform?

Data Graph (LDBC_SNB benchmark)
o Simulate a Facebook-like social network over 4 years
o 187.11 million nodes, 1.25 billion edges (65GB in text, 170GB in Neo4j)

Query Graph:
Q1 Q2
P1:knows reply_of knows tag . tag

‘has_c ‘has. ¢ ‘has_c :has_. ke hai C has_c
reator reator reator reator Fedliat reator
@ P nows ./ knows

p1.firstName = * pl.lastName = p1.firstName = p1.f/rstName =*AND
p2.firstName = *

@ Person ® Post @ Comment @ Tag

Single Thread Evaluation

Q1/s Q2/s Q3/s Q4/s
Neodj 87 594 236 182
PatMat 12 24 17 256

- Configuration: Xeon CPU E5-2698 v4 @ 2.20GHz (use only 1 thread), 512GB RAM,
2 TB disk

Distributed Evaluation

Q1/s Q2/s Q3/s
OuUT OF OuUT OF
Gradoop MEMORY OVERTIME MEMORY
Morpheus OVERTIME OVERTIME OVERTIME
PatMat 2.6 9.4 5.3

Q4/s

OuT OF
MEMORY

OVERTIME

77.3

- Configuration: 10 machines (Xeon CPU E3-1220 V6 3.00GHz, 64GB RAM, 1 TB

disk, 10GBps)

3. Rust Dependencies
for PatMat

What libraries are we using? Why
do we love Rust?

Timely Dataflow

- Adistributed data-parallel compute engine based on the dataflow
computation model (https://aithub.com/TimelyDataflow/timely-dataflow)
- high-performance and low-latency
- highly scalable and flexible
- suitable for both streaming processing and batch processing
- The ecosystem
- Timely Dataflow:
- primitive operators: unary, binary, etc
- standard operators: map, filter, etc

- Differential Dataflow (https://github.com/timelydataflow/differential-dataflow)

- higher-level language built on Timely Dataflow
- operators: group, join, iterate, etc

https://github.com/TimelyDataflow/timely-dataflow)
https://github.com/timelydataflow/differential-dataflow)

Timely Example 1

extern crate timely;

use timely::dataflow: :operators::*;

use timely::dataflow::*; using 4 workers

fn main() { initialize and run a dataflow .)
timely: :execute from_args(std::env::args(), |worker| { % €argo run

let index = worker.index(); workers are indexed 0 to (#workers-1 Finished dev [unoptimized + debuginfo] target(s) in
let mut input = InputHandle::<u32, u32>::new(); 0.14s

Running "target/debug/example -w 4
define InputHandle<Timestamp, Data> g get/ a/ p

worker.dataflow(|scope| { worker 1: hello 1

scope worker 1: hello 5

.input_from(&mut input)

shuffle the data to x%#workers worker 3: hello 3

worker 3: hello 7
worker 1: hello 9

.exchange(|&x| x as u64)

.inspect(move |x| inspect the output
println!("worker {}:\thello {}", index, x));

1; worker0: hello0
’ worker 0: hello 4
for round in @..10 { worker 0: hello 8

if index == 0 { send data on Worker 0 worker2: hello 2
)s

input.send(round worker 2: hello 6
¥

}
}) Unordered

.unwrap();

extern crate timely;

use timely::dataflow: :operators::*;
use timely::dataflow::*;

fn main() {
timely: :execute _from_args(std::env::args(), |worker| {

})

let index = worker.index();
let mut input = InputHandle::<u32, u32>::new();
let mut probe = ProbeHandle::new();

worker.dataflow(|scope| {
scope
.input_from(&mut input)
.exchange(|&x| x as u64)
.inspect(move |x|
println!("worker {}:\thello {}", index, x))
.probe_with(&mut probe);

Monitor the

progress

})s

for round in 9..10 {
if index == 0 {
input.send(round); Loops until all workers
} have processed all

work for that epoch

input.advance_to(round + 1);
while probe.less_than(input.time()) {
worker.step();
}
}

.unwrap();

Timely Example 2

% cargo run ---w 4
Finished dev [unoptimized + debuginfo] target(s) in
0.14s
Running ‘target/debug/example -w 4°
worker 0: hello 0
worker 1: hello 1
worker 2: hello 2
worker 3: hello 3
worker 0: hello 4
worker 1: hello 5
worker 2: hello 6
worker 3: hello 7
worker 0: hello 8
worker 1: hello 9

Ordered

... does it work for graph processing?

PageRank Cores twitter_rv uk_2007_05

(20 iterations) (41 million nodes, 1.5 billion edges) (105 million nodes,3.7 billion edges)
Spark 128 857s 1759s
Giraph 128 596s 1235s
GraphLab 128 249s 833s
GraphX 128 419s 462s
Laptop (Rust) 1 110s 256s

128 15s 19s

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost? (HOTOS'15)

Other Crates

TiKV: fast distributed key-value database
rust-rocksdb : Rust wrapper for RocksDB
tarpc: pure Rust RPC framework

Tokio: well-known asynchronous runtime
Rayon: to do parallel computation easily
threadpool: basic thread pool
crossbeam: useful tools for concurrent
programming

parking_lot: easy-to-use locks

hdFfs-rs: libhdfs binding for Rust

Thrift: connect to HBase

lru-rs: efficient LRU cache

iron: web API support
Serde(Bincode/JSON/CBOR): serialization
and deserialization

itertools: extended iterators
FxHash/SeaHash/fnv: fast hashing
rust-snappy: fast snap compression
indexmap/fixedbitset: useful data
structures

rust-csv: load and export in csv format
Clap: parsing command line arguments
libc: interoperate with C code(e.q.
libcypher)

petgraph rusted_cypher

Graph data structure library Rust crate for accessing a
in Rust. neod4j server.

(https://github.com/petgraph/pet https://qithub.com/livioribeiro
graph) [rusted-cypher

Graph Analytics

in Rust
indradb

A simple graph database
written in Rust.

(https://github.com/indradb/indr
adb)

https://github.com/petgraph/petgraph
https://github.com/petgraph/petgraph
https://github.com/livioribeiro/rusted-cypher
https://github.com/livioribeiro/rusted-cypher
https://github.com/indradb/indradb
https://github.com/indradb/indradb

We love Rust !

- Performance
- Blazing fast
- No garbage collector

- Reliability
- Guaranteed memory safety
- "Fearless Concurrency”

- Productivity
- Modern development tools
- Lots of amazing libraries

- and many more...

https://github.com/UNSW-database
mailto:zyang@cse.unsw.edu.au

