
Computer Science and Engineering

2022 Australasian Database Conference

Efficient kNN Join over Dynamic High-
dimensional Data

The University of New South Wales, Sydney

Nimish Ukey, Zhengyi Yang, Guangjian Zhang, Boge Liu, Binghao Li, and Wenjie Zhang

2

Introduction
• What is kNN-join?

• For every object of the query dataset R, finding the k nearest neighbors from another object dataset S

• Applications

• kNN classification, k-means clustering, outlier detection, similarity search, etc.

Fig. 1. An example of kNN Join with k = 2.

3

kNN Join Applications
• Point Cloud Registration

• It is the process of finding a spatial transformation that aligns two-point clouds

• Example: Iterative Closest Point

• DBSCAN - Density-Based Spatial Clustering of Applications with Noise

4

Introduction
• What’s Dynamic kNN join?

• For any item updates, the affected user list must be updated efficiently

• Applications of Dynamic kNN Join

• Recommendation system

• Feature extraction

• Video on-demand

• Social network services, etc

5

Related Work
• Existing works focus on static data MuX[1], Gorder[2], iJoin[3].

• Yu, Cui, et al. proposes a high-dimensional kNN Join+ algorithm [4] for dynamically updating the

new data points to allow incremental updates on kNN join results.

• Researchers propose the index structure of High-dimensional R-tree [5] on dynamic kNN join. It

updates only the affected data points to avoid redundant computation

[1] Böhm, C., Krebs, F.: The k-nearest neighbour join: Turbo charging the kdd process. Knowledge and Information Systems 6(6), 728–749
(2004)

[2] Xia, C., Lu, H., Ooi, B.C., Hu, J.: Gorder: an efficient method for knn join process-ing. In: Proceedings of the Thirtieth international
conference on Very large databases-Volume 30. pp. 756–767 (2004)

[3] Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based knn join processing for high-dimensional data. Information and Software Technology
49(4), 332–344 (2007)

[4] Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional knn joins with incremental updates. Geoinformatica 14(1), 55–82 (2010)
[5] Yang, C., Yu, X., Liu, Y.: Continuous knn join processing for real-time recommendation. In: 2014 IEEE International Conference on Data

Mining. pp. 640–649. IEEE (2014)

Research Problem

• Efficient kNN Join over Dynamic High-dimensional Data

• Given : In d-dimensional space, query point set/user dataset U = {u0, u1, u2 … ,un} and object

point/item dataset set I = {o0, o1, o2 … ,on} and an integer k.

• Goal : For the given user dataset U and an item dataset I, our goal is to dynamically find the kNN

join results of U in I upon every update of I (i.e., insertions and deletions).

7

HDR Tree
• The process of computing PCA:

• Let X[d×N] be a point matrix

• compute its covariance matrix Y, and then compute the eigenvalues and eigenvectors of Y.

• Rank the eigenvalues and choose the eigenvectors corresponding to the r largest eigenvalues to form a

transformation matrix V[r×d].

• Finally, transform a point p to the r-dimensional space by multiplying it with V

8

Structure of HDR Tree

Fig. 2. HDR-tree structure

9

Our Contributions

• Limitations of the of existing solutions for kNN join over dynamic

high-dimensional data

1. Lack of Support for Batch Updates.

2. Lack of Support for Deletions.

• Our solutions for the improvement of existing system

1. We provided the Batch Operations

2. Lazy Updates.

3. Optimised Deletions

10

Lazy Updates
• Identifying the affected users

• mark them as "dirty"

• Delaying updates until kNN values of affected users are needed

Fig. 2: Example of Lazy Updates on HDR-Tree

11

Batch Update for Insertion
• Identify the affected users but didn’t update them for each of the new items

• We process all updates at the node left before updating the parameters on the internal level to help

save the cost.

• Example –

• Input item stream = {i1, i2,…, in} & user set = {u1, u2, ….., um}

i1 = { u1, u8, u11 }

i2 = { u8, u11, u18, u25}

Ø batch update helps us to save the cost

12

Batch Update for Deletion
• Example – Lets suppose we consider a batch of 4

• Input item stream = {i1, i2,…, in} & user set = {u1, u2, ….., um}

i1 = { u9, u10 }

i2 = { u8, u21 }

i3 = { u8, u9 }

i4 = { u9, u17 }

Ø Performing batch update helps us to avoid repetitive computation costs. As shown in the above example, we

had to update 3 times earlier for user u9.

13

Deletion Optimization

• Generally, reverse kNN need to perform for delete operation.

• Computationally expensive operation

• Maintained RkNN table for all items to speed up the searching process of affected users

• Reduce search cost

14

Experimental Setup

• Language: C++

• RAM: 12GB

• Processor: Intel Core i5-4210U 2.4GHz

• OS: Windows 10

• Dataset: NUS-WIDE Image Dataset [6]

• Default values:
• window size - 200,000

• size of user set - 50,000
• K - 10
• Dimension - 128

[6] Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In:
Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

15

Experimental Results

Fig. 3. Vary number of updated items Fig. 4. Vary number of k Fig. 5. Vary number of |W|

16

Experimental Results

Fig. 6. Vary number of features Fig. 7: HDR Tree vs RkNN Table in Deletion

Thank You

