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Introduction

What is kNN-join?

« For every object of the query dataset R, finding the k nearest neighbors from another object dataset S
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Fig. 1. An example of kNN Join with k = 2.

Applications

* kNN classification, k-means clustering, outlier detection, similarity search, etc.
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KNN Join Applications

« Point Cloud Registration

» ltis the process of finding a spatial transformation that aligns two-point clouds

» Example: Iterative Closest Point
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Introduction

What’s Dynamic kNN join?

. For any item updates, the affected user list must be updated efficiently

+ Applications of Dynamic kNN Join
* Recommendation system
+  Feature extraction

 Video on-demand

* Social network services, etc




Related Work

»  Existing works focus on static data MuX[1], Gorder[2], iJoin[3].
* Yu, Cui, et al. proposes a high-dimensional kNN Join+ algorithm [4] for dynamically updating the
new data points to allow incremental updates on kNN join results.

* Researchers propose the index structure of High-dimensional R-tree [5] on dynamic kNN join. It

updates only the affected data points to avoid redundant computation
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Research Problem

« Efficient kNN Join over Dynamic High-dimensional Data

« Given : In d-dimensional space, query point set/user dataset U = {ug, uy, U, _ u,} and object

point/item dataset set / = {0,, 04, 0, . 0,} and an integer k.

« Goal : For the given user dataset U and an item dataset |, our goal is to dynamically find the kNN

join results of U in | upon every update of | (i.e., insertions and deletions).




HDR Tree

 The process of computing PCA:
+ Let X[d X N] be a point matrix
+ compute its covariance matrix Y, and then compute the eigenvalues and eigenvectors of Y.

+ Rank the eigenvalues and choose the eigenvectors corresponding to the r largest eigenvalues to form a

transformation matrix V[r x d].

+ Finally, transform a point p to the r-dimensional space by multiplying it with V
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Structure of HDR Tree
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Fig. 2. HDR-tree structure
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Our Contributions

« Limitations of the of existing solutions for kNN join over dynamic

high-dimensional data
1.  Lack of Support for Batch Updates.
2.  Lack of Support for Deletions.
* Our solutions for the improvement of existing system

1.  We provided the Batch Operations

2. Lazy Updates.

3.  Optimised Deletions




Lazy Updates

+ Identifying the affected users
 mark them as "dirty"

+ Delaying updates until kNN values of affected users are needed Input item stream
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Fig. 2: Example of Lazy Updates on HDR-Tree




Batch Update for Insertion

11

|dentify the affected users but didn’t update them for each of the new items

We process all updates at the node left before updating the parameters on the internal level to help

save the cost.

Example —
* Input item stream = {iy, ip,..., in} & user set = {uy, up, ....., Umn}
i1 = { ui,/us
i = Ug Uqg, Uos)

» batch update helps us to save the cost
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Batch Update for Deletion

« Example — Lets suppose we consider a batch of 4

* Input item stream = {iy, ip,..., in} & user set = {uy, uy, ..... , U}

{ Uro }

ip = {|us| U }

i3 = { Us,}
{ Us7 }

» Performing batch update helps us to avoid repetitive computation costs. As shown in the above example, we

had to update 3 times earlier for user uy.




Deletion Optimization

Generally, reverse kNN need to perform for delete operation.

Computationally expensive operation

Maintained RKNN table for all items to speed up the searching process of affected users

Reduce search cost




Experimental Setup

« Language: C++

«  RAM: 12GB

* Processor: Intel Core i5-4210U 2.4GHz
* OS: Windows 10

+ Dataset: NUS-WIDE Image Dataset [6]

 Default values:

 window size - 200,000

* size of user set - 50,000
« K-10

. Dimension - 128

[6] Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In:
Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1-9 (2009)
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Experimental Results
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Experimental Results
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Fig. 6. Vary number of features Fig. 7: HDR Tree vs RkNN Table in Deletion
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